您当前位置: 首页» Members
 
introduction
Members
research activity
publications
Facilities
Positions Open
Contact Us
Photo Gallery
 
       
 
Members
 
发布作者:  发布时间:2017-04-01 已读:
 
 
  

 

 

 


Chongli Zhong
Professor
Director, Lab of Computational Chemistry
Dept. of Chemical Engineering
Beijing University of Chemical Technolody
Beijing 100029, China
Phone: +86-10-64419862
E-mail: zhongcl@mail.buct.edu.cn

Education and working experience:
1993, PhD, Beijing University of Chemical Technology, China
1993-1995, Assistant Professor, Qingdao University of Technology
1995-1998, Assistant Professor, Hiroshima University, Japan
1998-1999, Postdoctoral Research Fellow, Delft University of Technology, The Netherlands
1999-present, Professor, Beijing University of Chemical Technology

Research interests:
(1) Computer modeling of nano-porous materials, particularly metal-organic frameworks
(2) Development of computational methods and statistical theories for nano-scale researches in the field of Chemical Engineering
(3) Synthesis of MOFs and preparation of MOF membranes

Professional awards & fellowships:
2012: Chang Jiang Scholar
2007: National Natural Science Fund for Distinguished Young Scholars
2004: Natural Science Award (second class), Ministry of Education of China
2002: Excellent University Teacher' Award, Ministry of Education of China

Pulications:
166. Y. Zhang, X. Zhao, H. Huang, Z. Li, D. Liu and C. Zhong, Selective removal of transition metal ions from aqueous solution by metal–organic frameworks, RSC Adv., 2015, 5, 72107–72112.

165. X. Zhao, X. Han, Z. Li, H. Huang, D. Liu and C. Zhong. Enhanced removal of iodide from water induced by a metal-incorporated porous metal–organic framework, Appl. Surf. Sci., 2015, 351, 760-764.

164. D. Liu, T.-F. Liu, Y.-P. Chen, L. Zou, D. Feng, K. Wang, Q. Zhang, S. Yuan, C. Zhong and H.-C. Zhou, A Reversible Crystallinity-Preserving Phase Transition in Metal-Organic Frameworks: Discovery, Mechanistic Studies, and Potential Applications, J. Am. Chem. Soc., 2015, 137,7740–7746.

163. X. Guo, H. Huang, Y. Ban, Q. Yang, Y. Xiao, Y. Li, W. Yang and C. Zhong, Mixed matrix membranes incorporated with amine- functionalized titanium-based metal-organic framework for CO2/CH4 separation, J. Membr. Sci., 2015, 478, 130-139.

162. Y. Ying, Y. Xiao, J. Ma, X. Guo, H. Huang, Q. Yang, D. Liu and C. Zhong, Recovery of acetone from aqueous solution by ZIF-7/PDMS mixed matrix membranes, RSC Adv., 2015, 5, 28394–28400.

161. K. Wang, H. Huang, W. Xue, D. Liu, X. Zhao, Y. Xiao, Z. Li, Q. Yang, L. Wang, C. Zhong, An ultrastable Zr metal-organic framework with a thiophene-type ligand containing methyl groups, CrystEngComm, 2015, 17, 3586-3590.

160. M. Tong, Q. Yang and C. Zhong, Computational screening of covalent organic frameworks for CH4/H2, CO2/H2 and CO2/CH4 separations, Microporous Mesoporous Mater., 2015, 210, 142-148.

159. T. Han, Y. Xiao, M. Tong, H. Huang, D. Liu, L. Wang and C. Zhong, Synthesis of CNT@MIL-68(Al) composites with improved adsorption capacity for phenol in aqueous solution, Chem. Eng. J., 2015, 275, 134-141.

158. J. Ma, Y. Ying, Q.Yang, Y. Ban, H. Huang, X. Guo, Y. Xiao, D. Liu, Y. li, W. Yang and C. Zhong, Mixed-matrix membranes containing functionalized porous metal-organic polyhedrons for effective separation of CO2/CH4 mixture,Chem. Commun., 2015,51, 4249-4251.

157. Z. Li, Y. Xiao, W. Xue, Q. Yang and C. Zhong. Ionic liquid/metal−organic framework composites for H2S removal from natural gas: A computational exploration, J. Phys. Chem. C 2015, 119, 3674−3683.

156. Y. Xiao, X. Guo, H. Huang, Q. Yang, A. Huang and C. Zhong. Synthesis of MIL-88B(Fe)/Matrimid mixed-matrix membranes with high hydrogen permselectivity. RSC Adv., 2015, 5, 7253-7259.

155. Y. Xiao, T. Han, G. Xiao, Y. Ying, H. Huang, Q. Yang, D. Liu and C. Zhong. Highly Selective Adsorption and Separation of Aniline/Phenol from Aqueous Solutions by Microporous MIL-53(Al): A Combined Experimental and Computational Study. Langmuir, 2014, 30,12229–12235.

154. Z. Li, G. Xiao, Q. Yang, Y. Xiao and C. Zhong. Computational exploration of metal-organic Frameworks for CO2/CH4 separation via temperature swing adsorption, Chem. Eng. Sci. 2014, 120, 59-66.

153. Q. Ma, Q. Yang, A. Ghoufi, M. Lei, G. Ferey, C. Zhong and G. Maurin, Guest-modulation of the mechanical properties of flexible porous Metal Organic Frameworks, J. Mater. Chem. A, 2014, 2, 9691-9698.

152. L. Xie, D. Liu, H. Huang, Q. Yang and C. Zhong, Efficient capture of nitrobenzene from waste water using metal–organic frameworks, Chem. Eng. J., 2014, 246, 142-149.

151. X. Zhao, D. Liu, H. Huang, W. Zhang, Q. Yang and C. Zhong, The stability and defluoridation performance of MOFs in fluoride solutions, Microporous Mesoporous Mater., 2014, 185, 72-78.

150. D. Wu, G. Maurin, Q. Yang, C. Serre, H. Jobic and C. Zhong, Computational exploration of a Zr-carboxylate based metal-organic framework as a membrane material for CO2 capture, J. Mater. Chem. A, 2014, 2, 1657–1661.

149. D. Zhou, F. Zhang, J. Mi and C. Zhong, Line Tension and Contact Angle of Heterogeneous Nucleation of Binary Fluids, AIChE J., 2013, 59: 4390-4398.

148. Q. Yang, D. Liu, C. Zhong and J. Li, Development of Computational Methodologies for Metal-Organic Frameworks and Their Application in Gas Separations, Chem. Rev., 2013, 113, 8261–8323

147. Q. Yang, S. Vaesen, F. Ragon, A.D. Wiersum, D. Wu, A. Lago, T. Devic, C. Martineau, F. Taulelle, P.L. Llewellyn, H. Jobic, C. Zhong, C. Serre, G. De Weireld and G. Maurin, A Water Stable Metal–Organic Framework with Optimal Features for CO2 Capture, Angew. Chem. Int. Ed., 2013, 52, 10316-10320.

146. X. Zhao, D. Liu, H. Huang, W. Zhang, Q. Yang and C. Zhong. The stability and defluoridation performance of MOFs in fluoride solutions. Microporous & Mesoporous Mater., 2014, 185, 72-78

145. Y. Chen, L. Liu, Q. Yang, S. Wen, L. Zhang and C. Zhong. Computational Study of Nanoparticle Dispersion and Spatial Distribution in Polymer Matrix under Oscillatory Shear Flow, Langmuir, 2013, 29 13932-13942

144. X. Wang, J. Mi and C. Zhong. Density functional theory for crystal-liquid interfaces of Lennard-Jones fluid, J. Chem. Phys., 2013, 138, 164704

143. Y. Xiao, Q. Yang, D. Liu and C. Zhong. Computational design of metal-organic frameworks for aniline recovery from aqueous solution. CrystEngComm, 2013, 15, 9588-9595.

142. Y. Zhao, C. Zhong and C.-J. Liu. Enhanced CO oxidation over thermal treated Ag/Cu-BTC. Catal. Commun., 2013, 38, 74-76.

141.M. Tong, D. Liu, Q. Yang, S. Devautour-Vinot, G. Maurin and C. Zhong,Influence of the framework metal ions on the dye capture behavior of the MIL-100 (Fe, Cr) MOF type solids, J. Mater. Chem. A. 2013, 1, 8534-8537.

140. W. Zhang, H. Huang, D. Liu, Q. Yang, Y. Xiao, Q. Ma and C. Zhong. A New Metal-Organic Framework with High Stability Based on Zirconium for Sensing Small Molecules, Microporous & Mesoporous Materials, 2013, 171, 118-124.

139. C. Zhang, Y. Xiao, D. Liu, Q. Yang and C. Zhong.A hybrid zeolitic imidazolate framework membrane by mixed-linker synthesis for efficient CO2 capture, Chem. Commun., 2013, 49, 600-602.

138. D. Zou, J. Mi and C. Zhong, Theoretical Study of Dissolved Gas at a Hydrophobic Interface, J. Phys. Chem. C, 2012, 116: 3042-3049.

137. A. Ghoufi, A. Subercaze, Q. Ma, P. Yot, Y. Ke, I. Puente-Orench, T. Devic, V. Guillerm, C. Zhong, C. Serre, G. Fe?rey and G. Maurin, Comparative Guest, Thermal, and Mechanical Breathing of the Porous Metal Organic Framework MIL-53(Cr): A Computational Exploration Supported by Experiments, J. Phys. Chem. C 2012, 116, 13289−13295.

136. Q. Yang, C. Serre, T. Devic, F. Ragon, V. Guillerm, A. Wiersum, P. L. Llewellyn, G. Maurin and C. Zhong, CH4 storage and CO2 capture in highly porous zirconium oxide based metal-organic frameworks, Chem. Commun., 2012, 48, 9831–9833.

135. Q. Ma, Q. Yang, A. Ghoufi, G. Férey, C. Zhong and G. Maurin, Guest dependent pressure behavior of the flexible MIL-53(Cr): A computational exploration, Dalton Trans., 2012, 41, 3915-3919.

134. P. G. Yot, Q. Ma, J. Haines, Q. Yang, A. Ghoufi, T. Devic, C. Serre, V. Dmitriev, G. Férey, C. Zhong and G. Maurin, Large breathing of the MOF MIL-47(VIV) under mechanical pressure: a joint experimental–modelling exploration, Chem. Sci., 2012, 3, 1100-1104.

133. H. Huang, W. Zhang, D. Liu, C. Zhong, Understanding the effect of trace amount of water on CO2 capture in natural gas upgrading in metal−organic frameworks: a molecular simulation study, Ind. Eng. Chem. Res., 2012, 51, 10031-10038.

132. D. Wu, Q. Yang, C. Zhong, D. Liu, H. Huang, W. Zhang, G. Maurin, Revealing the structure-property relationships of metal-organic frameworks for CO2 capture from flue gas, Langmuir, 2012, 28, 12094-12099.

131. H. Zhang, H. Huang, C, Li. H, Meng. Y, Lu. C. Zhong, D. Liu, Q. Yang, Adsorption behavior of metal-organic framework for thiophenic sulfur from diesel oil, Ind. Eng. Chem. Res., 2012, 51, 12449-12455.

130. F. Cao, C. Zhang, Y. Xiao, H. Huang, W. Zhang, D. Liu, C. Zhong, Q. Yang, Z. Yang, X. Lu, Helium recovery by a cubtc metal-organic framework membrane, Ind. Eng. Chem. Res., 2012, 51, 11274-11278.

129. D. Liu, W. Wang, J. Mi, C. Zhong, Q. Yang, D. Wu, Quantum sieving in metal-organic frameworks: a computational study, Ind. Eng. Chem. Res., 2012, 51, 434-442

128. W. Zhuang, D. Yuan, D. Liu, C. Zhong, J.-R. Li, H.-C. Zhou, Robust metal−organic framework with an octatopic ligand for gas adsorption and separation: combined characterization by experiments and molecular simulation, Chem. Mater., 2012, 24, 18-25.

127. W. Zhang, H. Huang, C. Zhong, D. Liu, Cooperative effect of temperature and linker functionality on CO2 capture from industrial gas mixtures in metal-organic frameworks: a combined experimental and molecular simulation study, Phys.Chem.Chem.Phys., 2012, 14, 2317-2325.

126. D. Wu, C. Wang, B. Liu, D. Liu, Q. Yang, C. Zhong, Large-scale computational screening of metal-organic frameworks for CH4/H2 separation, AIChE J., 2012, 58, 2078-2084.

125. L. Zhao, Q. Yang, Q. Ma, C. Zhong, J. Mi, D. Liu, A force field for dynamic Cu-BTC metal-organic framework, J. Mol. Model., 2011, 17, 227-234.

124. W. Mu, D. Liu, C. Zhong, A computational study of the effect of doping metals on CO2/CH4 separation in metal-organic frameworks, Micropor. Mesopor. Mater., 2011, 143, 66-72.

123. H. Huang, W. Zhang, D. Liu, B. Liu, G. Chen, C. Zhong, Effect of temperature on gas adsorption and separation in ZIF-8: a combined experimental and molecular simulation study, Chem. Eng. Sci., 2011, 66, 6297-6305.

122. Q. Yang, L. Ma, C. Zhong, X. An, and D. Liu, Enhancement of CO2/N2 Mixture Separation Using the Thermodynamic Stepped Behavior of Adsorption in Metal−Organic Frameworks, J. Phys. Chem. C, 2011, 115, 2790-2797.

121. D. Liu and C. Zhong, Understanding gas separation in metal-organic frameworks using computer modeling, J. Mater. Chem., 2010, 20, 10308-10318. (Feature article)

120. M. Zeng, J. Mi, and C. Zhong, Boundary of prewetting transition of Ar on a Li surface, Phys. Rev. B, 2010, 82, 125452.

119. D. Wu, Q. Xu, D. Liu and C.Zhong, Exceptional CO2 Capture Capability and Molecular-Level Segregation in a Li-modified Metal-Organic Framework, J. Phys. Chem. C, 2010, 114, 16611-16617.

118. Q. Ye, S. Yan, D. Liu, Q. Yang and C. Zhong, Methane Adsorption in Several Series of Newly-synthesized Metal-Organic Frameworks: A Molecular Simulation Study, Molecular Simulation, 2010, 36, 682-692.

117. Q. Xu, J. Mi and C. Zhong, Integral Equation Theory for Gas Sorption and Swelling of Glassy Atactic Polystyrene, Ind. Eng. Chem. Res., 2010, 49, 4914-4922.

116. C. Zheng and C. Zhong, Estimation of framework charges in covalent organic frameworks using connectivity-based atom contribution method, J. Phys. Chem. C, 2010, 114, 9945-9951.

115. Q. Ma, Q. Yang, C. Zhong, J. Mi and D. Liu, Studies of capillary phase transitions of methane in metal-organic frameworks by gauge cell Monte Carlo simulation, Langmuir, 2010, 26, 5160-5166.

114. Y. Liu, D. Liu, Q. Yang, C. Zhong and J. Mi, A comparative study of separation performance of COFs and MOFs for CH4/CO2/H2 mixtures, Ind. Eng. Chem. Res., 2010, 49, 2902-2906.

113. Q. Xu and C. Zhong, A general approach for estimating framework charges in metal-organic frameworks, J. Phys. Chem. C, 2010, 114, 5035-5042.

112. M. Zeng, J. Mi and C. Zhong, Density functional theory integrated with renormalization group theory for criticality of nanoconfined fluids, J. Phys. Chem. B, 2010, 114, 3894-3901.

111. Q. Xu, D. Liu, Q. Yang, C. Zhong and J. Mi, Li-modified metal-organic frameworks for CO2/CH4 separation: a route to achieving high adsorption selectivity, J. Mater. Chem. 2010, 20, 706-714.

110. W. Mu, D. Liu, Q. Yang and C. Zhong, Computational study of the effect of organic linkers on natural gas upgrading in metal-organic frameworks, Micropor. Mesopor. Mater., 2010, 130, 76-82.

109. D. Liu and C. Zhong, Characterization of Lewis acid sites in metal-organic frameworks using density functional theory, J. Phys. Chem. Lett. 2010, 1, 97-101.

108. C. Zheng, D. Liu, Q. Yang, C. Zhong and J. Mi, Computational Study on the Influences of Framework Charges on CO2 Uptake in Metal-Organic Frameworks, Ind. Eng. Chem. Res., 2009, 48, 10479–10484.

107. L. Zhao and C. Zhong, Negative thermal expansion in covalent organic framework COF-102, J. Phys. Chem. C. 2009, 113, 16860–16862.

106. M. Zeng, Y. Tang, J. Mi and C. Zhong, Improved direct correlation function for density functional theory to analysis of pore size distribution, J. Phys. Chem. C, 2009, 113, 17428–17436.

105. C. Xue, Q. Yang and C. Zhong, Effects of side pockets on gas separation in metal-organic framework Cu-BTC: A molecular simulation study, Molecular Simulattion, 2009, 35, 1249–1255.

104. Q. Yang, Q. Xu, B. Liu, Chongli Zhong and B. Smit Molecular simulation of CO2/H2 mixture separation in metal-organic frameworks: effect of catenation and electrostatic interactions, Chin. J. Chem. Eng., 2009, 17: 781-790.

103. C. Xue, Z. Zhou, Q. Yang and C. Zhong, Enhanced methane adsorption in catenated metal-organic frameworks: A molecular simulation study. Chin. J. Chem. Eng., 2009, 17, 580-584.

102. J. Xin, D. Liu and C. Zhong, Morphology and structure control of multicompartment micelles from triblock copolymer blends, J. Phys. Chem. B, 2009, 113, 9364–9372.

101. Q. Xu, D. Liu, Q. Yang, and Chongli Zhong, Molecular simulation study of the quantum effects of hydrogen adsorption in metal-organic frameworks: influences of pore size and temperature, Molecular Simulation, 2009, 35, 748-754.

100. Q. Xu, J. Mi and C. Zhong, Description of the structure of polystyrene with six-site semiflexible model, Macromolecules, 2009, 42, 2826-2830.

99. C. Xue and C. Zhong, Molecular simulation of hexane diffusion in dynamic metal-organic frameworks, Chinese Journal of Chemistry, 2009, 27, 472-478.

98. C. Xue, Z. Zhou, B. Liu, Q. Yang and C. Zhong, Methane diffusion mechanism in catenated metal-organic frameworks, Molecular Simulation, 2009, 35, 373-380.

97. D. Liu, C. Zheng, Q. Yang and C. Zhong, Understanding the adsorption and diffusion of carbon dioxide in zeolitic imidazolate frameworks: A molecular simulation study, J. Phys. Chem. C, 2009, 113, 5004-5009.

96. J. Mi, Y. He, and C. Zhong, Theoretical study of wetting behavior of nanoparticles at fluid interfaces, AIChE J., 2009, 55, 747-755.

95. Q. Yang and C. Zhong, Molecular simulation study of the stepped behaviors of gas adsorption in two-dimensional covalent organic frameworks, Langmuir, 2009, 25, 2302-2308.

94. D. Liu, Q. Yang and C. Zhong, Adsorption of methane in heterometallic metal-organic frameworks with anions: a molecular simulation study, Molecular Simulation, 2009, 35, 213-219.

93. H. Qi, D. Liu and C. Zhong, Cooperative aggregation of amphiphilic comblike copolymer/linear homopolymer blends in selective solvents: a density functional theory study, J. Phys. Chem. B, 2008, 112, 16409-16414.

92. H. Qi and C. Zhong, Density functional theory studies on the microphase separation of amphiphilic comb copolymers in a selective solvent, J. Phys. Chem. B, 2008, 112, 10841-10847.

91. B. Liu, Q. Yang, C. Xue, C. Zhong, B. Chen and B. Smit, Enhanced adsorption selectivity of hydrogen/methane mixtures in metal-organic frameworks with interpenetration: A molecular simulation study, J. Phys. Chem. C, 2008, 112, 9854-9860.

90. Y. He, J. Mi and Chongli Zhong, Surface tension and Tolman length of spherical particulate in contact with fluid, J. Phys. Chem. B, 2008, 112, 7251-7256.

89. Q. Xu, K. Wu, J. Mi and Chongli Zhong, Improved radial distribution functions for Coulomb charged fluid basedon first-order mean spherical approximation, J. Chem. Phys., 2008, 128, 214508.

88. B. Liu, Q. Yang, C. Xue, C. Zhong and B. Smit, Molecular simulation of hydrogen diffusion in interpenetrated metal-organic frameworks, Phys. Chem. Chem. Phys., 2008, 10, 3244-3249(Cover)

87. Q. Yang, Chongli Zhong and J. Chen, Computational study of CO2 storage in metal-organic frameworks, J. Phys. Chem. C, 2008, 112, 1562-1569

86. S. Wang, Q. Yang and Chongli Zhong, Adsorption and separation of binary mixtures in a metal-organic framework Cu-BTC: A computational study, Sep. Purif. Technol., 2008, 60, 30-35.

85. J. Mi, Y. Tang and Chongli Zhong, Theoretical study of Sutherland fluids with long-rang, short-range and highly short-range potential parameters, J. Chem. Phys., 2008, 128, 054503.

84. Y. Liu, Z. Li, J. Mi and Chongli Zhong, Modeling of aqueous electrolyte solutions based on primitive and first-order mean spherical approximation, Ind. Eng. Chem. Res., 2008, 47, 1695-1701.

83. D. Liu and Chongli Zhong, Multicompartment micelles formed from star-dendritic triblock copolymers in selective solvents: A dissipative particle dynamics study, Polymer, 2008, 49, 1407-1413.

82. Q. Yang, C. Xue, Chongli Zhong and J. Chen, Molecular simulation of separation of CO2 from flue gases in Cu-BTC MOF, AIChE J., 2007, 53, 2832-2840.

81. J. Xin, D. Liu and Chongli Zhong, Multicompartment micelles from star and linear triblock copolymer blends, J. Phys. Chem. B, 2007, 111, 13675-13682.

80. J. Xia, D. Liu and Chongli Zhong, Multicompartment micelles and vesicles from π-shaped ABC block copolymers: a dissipative particle dynamics study, Phys. Chem. Chem. Phys., 2007, 9, 5267-5273.

79. Chongli Zhong and D. Liu, Understanding multicompartment micelles using dissipative particle dynamics simulation, Macromol.Theory & Simulations, 2007, 16, 141-157 (1.544, invited Feature Article + Cover).

78. D. Liu and Chongli Zhong, Novel two-compartment micelles formed by self-assembly of linear pentablock copolymers in selective solvents, Macromol. Rapid Commun., 2007, 28, 292-297 (3.126).

77. J. Xia and Chongli Zhong, Multicompartment micelles from π-shaped ABC block copolymers, Chinese Journal of Chemistry, 2007, 25, 1732-1738.

76. L. Zhao, Y. Li and Chongli Zhong, Description of the structure and properties of atactic polystyrene melt using integral equation theory, Chinese Journal of Chemistry, 2007, 25, 1904-1910.

75. L. Zhao, Y. Li, and Chongli Zhong, An integral equation theory study on the structure and effective interactions in star polymer nanocomposite melts, J. Chem. Phys., 2007, 126, 014906 (3.138).

74. L. Zhao, Y. Li, and Chongli Zhong, Integral equation theory study on the phase separation in star polymer nanocomposite melts, J. Chem. Phys., 2007, 127, 154909.

73. J. Mi, Chongli Zhong, Y. Li and Y. Tang, Prediction of global VLE for mixtures with improved renormalization group theory, AIChE J., 2006, 52, 342-353 (2.036).

72. Q. Yang and Chongli Zhong, Understanding hydrogen adsorption in metal-organic frameworks with open metal sites: A computational study, J. Phys. Chem. B, 2006, 110, 655-658 (4.033).

71. Q. Yang and Chongli Zhong, Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks, J. Phys. Chem. B, 2006, 110, 17776-17783 (4.033).

70. Q. Yang and Chongli Zhong, Electrostatic-field-induced enhancement of gas mixture separation in metal-organic frameworks: a computational study, ChemPhysChem, 2006, 7, 1417-1421(3.607).

69. J. Mi, Y. Tang, Chongli Zhong and Y. Li, Prediction of phase behavior of nanoconfined Lennard-Jones fluids with density functional theory based on the first-order mean spherical approximation, J. Chem. Phys., 2006, 124, 144709 (3.138). (Also appeared in the April 24, 2006 issue of Virtual Journal of Nanoscale Science & Technology).

68. L. Zhao, Y. Li, Chongli Zhong and J. Mi, Structure and effective interactions in polymer nanocomposite melts: an integral equation theory study, J. Chem. Phys., 2006, 124, 144913 (3.138).

67. J. Xia and Chongli Zhong, Dissipative particle dynamics study of the formation of multicompartment micelles from ABC star triblock copolymers in water, Macromol. Rapid Commun., 2006, 27, 1110–1114 (3.126).

66. J. Xia and Chongli Zhong, Self-assembly of two agents in a core-shell-corona multicompartment micelle studied by dissipative particle dynamics simulations, Macromol. Rapid Commun., 2006, 27, 1654–1659 (3.126, cover).

65. Y. Cui, Chongli Zhong and J. Xia, Multicompartment micellar solutions in shear: a dissipative particle dynamics study, Macromol. Rapid Commun., 2006, 27, 1437–1441 (3.126).

64. D. Liu and Chongli Zhong, Cooperative self-assembly of nanoparticle mixtures in lamellar diblock copolymers: a dissipative particle dynamics study, Macromol. Rapid Commun., 2006, 27, 458-462 (3.126).

63. Q. Yang, X. Bu, Chongli Zhong and Y. Li, Molecular simulation of adsorption of HCFC-22 in pillared clays, AIChE J., 2005, 51, 281-291 (2.036).

62. Q. Yang and Chongli Zhong, Molecular simulation of adsorption and diffusion of hydrogen in metal-organic frameworks, J. Phys. Chem. B, 2005, 109, 11862-11864 (4.033).

61. J. Mi, Y. Tang, Chongli Zhong and Y. Li, Prediction of global VLE for mixtures containing polar and associating components with improved RG theory, J. Phys. Chem. B, 2005, 109, 20546-20533 (4.033).

60. L. Zhao, Y. Li, J. Mi and Chongli Zhong, Integral equation theory for atactic polystyrene melt with a coarse-grained model, J. Chem. Phys., 2005, 123, 124905 (3.138). (Also appeared in Virtual Journal of Nanoscale Science & Technology, 2005, Volume 12, Issue 15)

59. D. Liu and Chongli Zhong, Dissipative particle dynamics simulation of microphase separation and properties of linear-dendritic diblock copolymer melts under steady shear flow, Macromol. Rapid Commun.,
2005, 26, 1960-1964 (3.126).

58. Q. Yang and Chongli Zhong, Atomistic molecular dynamics simulation of liquid carbon tetrachloride confined in pillared pore materials, Chem. Eng. Sci., 2005, 60, 767-775 (1.735).

57. J. Mi, Chongli Zhong and Y. Li, Renormalization group theory for fluids including critical region. II. Binary mixtures, Chem. Phys., 2005, 312, 31-38 (1.934).

56. H. Yang and Chongli Zhong, Modeling of the solubility of aromatic compounds in supercritical carbon dioxide-cosolvent systems using SAFT equation of state, J. Super. Fluids, 2005, 33, 99-106 (2.144).

55. C. Yang and Chongli Zhong, Chirality factors and their application to QSAR studies of chiral molecules, QSAR & Comb. Sci., 2005, 24, 1047-1055 (1.826).

54. H. Liu and Chongli Zhong, General correlation for the prediction of theta (lower critical solution temperature) in polymer solutions, Ind. Eng. Chem. Res., 2005, 44, 634-638 (1.504).

53. H. Liu and Chongli Zhong, Modeling of the theta (lower critical solution temperature) in polymer solutions using molecular connectivity indices, Eur. Polym. J., 2005, 41, 139-147 (1.765).

52. J. He, Chongli Zhong and J. Mi, Modeling of Drug Release from Bioerodible Polymer Matrices, Drug Del., 2005, 12, 251-259 (1.067).

51. X. Bu and Chongli Zhong, Geometric structures and properties of Mgm+Hen (m=1, 2; n=1-10) clusters: ab initio studies, J. Mol. Struc.-Theochem., 2005, 726, 99-105 (1.045).

50. J. Mi, Chongli Zhong, Y. Li and Y. Tang, An improved renormalization group theory for real fluids, J. Chem. Phys., 2004, 121, 5372-5380 (3.138).

49. J. Mi, Chongli Zhong, Y. Li and J. Chen, Renormalization group theory for fluids including critical region. I. Pure fluids, Chem. Phys., 2004, 305, 37-45 (1.934).

48. Chongli Zhong, J. He, C. Xue and Y. Li, A QSAR study on inhibitory activities of 1-phenylbenzimidazoles against the platelet-derived growth factor receptor, Bioorg. Med. Chem., 2004, 12, 4009-4015 (2.286).

47. X. Bu and Chongli Zhong, Ab initio analysis of geometric structures of BeHen+ (n=1-12) clusters, Chem. Phys. Lett., 2004, 392, 181-186 (2.438).

46. X. Bu, Chongli Zhong and A. F. Jalbout, Ab initio studies of MHen+(M = Be, Mg; n=1-4) complexes, Chem. Phys. Lett., 2004, 387, 410-414 (2.438).

45. Y. Li, Q. Hu and Chongli Zhong, Topological modeling of the Setschenow constant, Ind. Eng. Chem. Res., 2004, 43, 4465-4468 (1.504).

44. Chongli Zhong, J. He, Z. Xia and Y. Li, Modeling of activity of efavirenz with the mutant of HIV reverse transcriptase using variable connectivity indices, QSAR & Comb. Sci., 2004, 23, 650-654(1.826).

43. Q. Yang and Chongli Zhong, Computer simulations of adsorption characteristics of carbon dioxide in slit graphite pores, Can. J. Chem. Eng., 2004, 82, 580-589 (0.574).

42. W. Lin, Q. Yang and Chongli Zhong, Molecular simulation of vapor-liquid equilibria of toxic gases, Fluid Phase Equilibria, 2004, 220, 1-6 (1.478).

41. Chongli Zhong and X. Wei, A comparative experimental study on the liquefaction of wood, Energy, 2004, 29, 1731-1741 (0.685).

40. J. Jin, Chongli Zhong, Z. Zhang, Y. Li, Solubilities of benzoic acid in supercritical CO2 with mixed cosolvent, Fluid Phase Equilibria, 2004, 226, 9-13 (1.478).

39. Q. Li, Chongli Zhong, Z. Zhang and Q. Zhou, Modeling of the solubility of solid solutes in supercritical CO2 with and without cosolvent using solution theory, Korean J. Chem. Eng., 2004, 21,
1173-1177 (0.75).

38. C. Yang and Chongli Zhong, A new model for prediction of surface tension of pure fluids, Chin. J. Chem. Eng., 2004, 12, 85-91 (0.34).

37. C. Yang and Chongli Zhong, Modified connectivity indices and their application to QSPR study, J. Chem. Inf. Comput. Sci., 2003, 43, 1998-2004 (2.923).

36. Chongli Zhong and Q. Hu, Estimation of the aqueous solubility of organic compounds using molecular connectivity indices, J. Pharm. Sci., 2003, 92, 2284-2294 (2.237).

35. C. Yang, L. Zhao and Chongli Zhong, Correlation of liquid thermal conductivity using molecular connectivity indices, Int. J. Thermophys., 2003, 24, 1651-1665 (0.94).

34. Q. Li, Z. Zhang, Chongli Zhong, Y. Liu and Q. Zhou, Solubility of solid solutes in supercritical carbon dioxide with and without cosolvents, Fluid Phase Equilibria, 2003, 207, 183-192 (1.478).

33. Y. Qu, X. Wei and Chongli Zhong, Experimental study on the direct liquefaction of cunninghamia lanceolata in water, Energy, 2003, 28, 597-606 (0.685).

32. J. He and Chongli Zhong, Correlation of infinite dilution activity coefficients of solvents in polymer solutions using connectivity indices, Eur. Polym. J., 2003, 39, 1297-1310 (1.765).

31. Q. Li, Chongli Zhong, Z. Zhang, Y. Liu and Q. Zhou, An equilibrium model for the correlation of the solubility of solids in supercritical fluids with cosolvent, Sep. Sci. Techn., 2003, 38, 1705 - 1719 (0.834).

30. J. He and Chongli Zhong, A QSPR study of infinite dilution activity coefficients of organic compounds in aqueous solutions, Fluid Phase Equilibria, 2003, 205, 303-316 (1.478).

29. Chongli Zhong and H. Yang, Representation of the solubility of solids in supercritical fluids using SAFT equation of state, Ind. Eng. Chem. Res., 2002, 41, 4899-4905 (1.504).

28. Chongli Zhong, C. Yang and Q. Li, Correlation of Henry's constants of nonpolar and polar solutes in molten polymers using connectivity indices, Ind. Eng. Chem. Res., 2002, 41, 2826-2833 (1.504).

27. Chongli Zhong and C. Yang, Approach for the calculation of high-order connectivity indices of polymers and its application, J. Polym. Sci.: Polym. Phys., 2002, 40, 401-407 (1.739).

26. D. Liu and Chongli Zhong, Modeling of the heat capacity of polymers with the variable connectivity index, Polym. J., 2002, 34, 954-961 (1.175).

25. Chongli Zhong, C.J. Peters and J. de Swaan Arons, Thermodynamic modeling of biomass conversion processes, Fluid Phase Equilibria, 2002, 194-197, 805-815 (1.478).

24. Chongli Zhong, Q. Yang and W.C. Wang, A group contribution model for the prediction of thermal conductivity of polymer melts, Ind. Eng. Chem. Res., 2001, 40, 4151-4153 (1.504).

23. Chongli Zhong and Q. Yang, New model for the prediction of the pressure dependence of thermal conductivity of polymer melts, Ind. Eng. Chem. Res., 2001, 40, 4000-4004 (1.504).

22. Q. Yang and Chongli Zhong, A modified PSRK model for the prediction of the vapor-liquid equilibria of asymmetric systems, Fluid Phase Equilibria, 2001, 192, 103-120 (1.478).

21. Chongli Zhong, Q. Yang and W.C. Wang, Correlation and prediction of the thermal conductivity of amorphous polymers, Fluid Phase Equilibria, 2001, 181, 195-202 (1.478).

20. Chongli Zhong and J. He, Evaluation of the group contribution activity coefficient models for the calculation of the thermodynamic factor relating self- to the mutual-diffusion coefficient in polymer solutions, J. Chem. Eng. Japan, 2001, 34, 1493-1498 (0.519).

19. Chongli Zhong, C. Yang and Y. Qu, A modified Vrentas-Duda model for the correlation of the solvent self-diffusion coefficients in polymer solutions, Polym. J., 2001, 33, 842-848 (1.175).

18. J. Zhou, W. Wang and Chongli Zhong, Molecular dynamics investigation of benzene in supercritical water, Chin. J. Chem. Eng., 2001, 9, 196-199 (0.34).

17. Chongli Zhong and H. Masuoka, Prediction of excess enthalpies at low and high pressures using a modified MHV1 mixing rule, Fluid Phase Equilibria, 1999, 158, 283-291.

16. Chongli Zhong and H. Masuoka, Modeling of gas solubility in polymers with cubic equations of state, Fluid Phase Equilibria, 1998, 144, 49-57.

15. W. Wang, X. Liu, Chongli Zhong, C.W. Twu and J.E. Coon, Group contribution simplified hole theory equation of state for liquid polymers and solvents and their solutions, Fluid Phase Equilibria, 1998, 144, 23-36.

14. Chongli Zhong and H. Masuoka, Correlations of Henry's constants of nonpolar solutes in molten polypropylene and poly(dimethyl siloxane) and polar solutes in molten polyethylene and poly (dimethyl siloxane), Ind. Eng. Chem. Res., 1997, 36, 2509-2513.

13. Chongli Zhong and H. Masuoka, An EOS/GE type mixing rule for perturbed hard-sphere equation of state and its application to the calculation of solid solubility in supercritical carbon dioxide, Fluid Phase Equilibria, 1997, 141, 13-23.

12. Chongli Zhong, H. Takeuchi and H. Masuoka, Vapor-liquid equilibria calculation in gas/large alkane systems using a group contribution equation of state, J. Chem. Eng. Japan, 1997, 30, 1133-1137.

11. W. Wang, X. Liu, Chongli Zhong, C.W. Twu and J.E. Coon, Simplified hole theory equation of state for liquid polymers and solvents and their solutions, Ind. Eng. Chem. Res., 1997, 36, 2390-2398.

10. Chongli Zhong and H. Masuoka, Prediction of Henry's constants for polymer containing systems using the SRK equation of state coupled with a new modified UNIFAC model, Fluid Phase Equilibria, 1996, 126, 1-12.

9. Chongli Zhong and H. Masuoka, A new mixing rule for cubic equations of state and its application to vapor-liquid equilibria of polymer solutions, Fluid Phase Equilibria, 1996, 123, 59-69.

8. Chongli Zhong, Y. Sato, H. Masuoka and X. Chen, Improvement of predictive accuracy of the UNIFAC model for vapor-liquid equilibria of polymer solutions, Fluid Phase Equilibria, 1996, 123, 97-106.

7. Chongli Zhong and H. Masuoka, Mixing rules for accurate prediction of vapor-liquid equilibria of gas/large alkane systems using SRK equation of state combined with UNIFAC, J. Chem. Eng. Japan, 1996, 29, 315-322.

6. Chongli Zhong, W. Wang and H. Lu, Open-cell model equation of state for liquids. 2. Polymer solutions and blends, Macromolecules, 1995, 28, 7737-7743.

5. Chongli Zhong, W. Wang and H. Lu, Open-cell model equation of state for liquids. 1. P-V-T behavior for liquids and liquid polymers, Macromolecules, 1994, 27, 660-664.

4. Chongli Zhong, W. Wang and H. Lu, Application of the simplified hole theory equation of state to polymer solutions and blends, Fluid Phase Equilibria, 1994, 102, 173-179.

3. Chongli Zhong, W. Wang and H. Lu, Simplified hole theory equation of state for polymer liquids, Fluid Phase Equilibria, 1993, 86, 137-146.

2. Chongli Zhong, W. Wang and Aa. Fredenslund, Description of ternary liquid-liquid equilibria near the critical region by scaling law, Fluid Phase Equilibria, 1993, 83, 119-126.

1. W. Wang and Chongli Zhong, Mixing rules for hydrogen-containing systems, Fluid Phase Equilibria, 1989, 47, 103-114.

 

 

 
 
 
来源: